Copulas, generalized estimating equations, and generalized linear mixed models promote the analysis of grouped data where non-normal responses are correlated. Unfortunately, parameter estimation remains challenging in these three frameworks. Based on prior work of Tonda, we derive a new class of probability density functions that allow explicit calculation of moments, marginal and conditional distributions, and the score and observed information needed in maximum likelihood estimation. Unlike true copulas, our quasi-copula model only approximately preserves marginal distributions. Simulation studies with Poisson, negative binomial, Bernoulli, and Gaussian bases demonstrate the computational and statistical virtues of the quasi-copula model and its limitations.
翻译:科普拉、通用估计方程和通用线性混合模型促进了对非正常反应相关部分的分组数据的分析。 不幸的是,在这三个框架中,参数估计仍然具有挑战性。 根据Tonda先前的工作,我们得出一个新的概率密度功能类别,可以明确计算时间、边际和有条件分布以及最大可能性估计所需的得分和观测信息。 与真正的千叶相不同,我们的准铜型模型只大约保存了边缘分布。 与Poisson、负比诺美、Bernoulli和Gaussian基地的模拟研究展示了准铜模型的计算和统计优点及其局限性。