Reasoning 3D shapes from 2D images is an essential yet challenging task, especially when only single-view images are at our disposal. While an object can have a complicated shape, individual parts are usually close to geometric primitives and thus are easier to model. Furthermore, parts provide a mid-level representation that is robust to appearance variations across objects in a particular category. In this work, we tackle the problem of 3D part discovery from only 2D image collections. Instead of relying on manually annotated parts for supervision, we propose a self-supervised approach, latent part discovery (LPD). Our key insight is to learn a novel part shape prior that allows each part to fit an object shape faithfully while constrained to have simple geometry. Extensive experiments on the synthetic ShapeNet, PartNet, and real-world Pascal 3D+ datasets show that our method discovers consistent object parts and achieves favorable reconstruction accuracy compared to the existing methods with the same level of supervision.
翻译:从 2D 图像中解释 3D 形状是一项重要但具有挑战性的任务, 特别是当只有单视图像可供我们使用时。 虽然一个对象的形状可能很复杂, 但每个部件通常接近几何原始, 因而更容易建模。 此外, 部件提供了一个中层代表, 能够对特定类别中不同对象的外观做出强烈反应。 在这项工作中, 我们只从 2D 图像收藏中处理 3D 部分发现的问题。 我们不依靠手动附加说明的部件来进行监督, 而是建议一种自我监督的方法, 即潜存部分的发现 。 我们的关键洞察力是先学习一种新颖的形状, 使每个部件都能够忠实地适应物体形状, 同时又受限于简单的几何测量 。 在合成的 ShapeNet 、 PartNet 和 真实世界 Pscal 3D+ 数据集上进行的广泛实验显示, 我们的方法发现了一致的物体部件, 并且比现有的监督级别的方法更精确。