A \emph{mixed interval graph} is an interval graph that has, for every pair of intersecting intervals, either an arc (directed arbitrarily) or an (undirected) edge. We are particularly interested in scenarios where edges and arcs are defined by the geometry of intervals. In a proper coloring of a mixed interval graph $G$, an interval $u$ receives a lower (different) color than an interval $v$ if $G$ contains arc $(u,v)$ (edge $\{u,v\}$). Coloring of mixed graphs has applications, for example, in scheduling with precedence constraints; see a survey by Sotskov [Mathematics, 2020]. For coloring general mixed interval graphs, we present a $\min \{\omega(G), \lambda(G)+1 \}$-approximation algorithm, where $\omega(G)$ is the size of a largest clique and $\lambda(G)$ is the length of a longest directed path in $G$. For the subclass of \emph{bidirectional interval graphs} (introduced recently for an application in graph drawing), we show that optimal coloring is NP-hard. This was known for general mixed interval graphs. We introduce a new natural class of mixed interval graphs, which we call \emph{containment interval graphs}. In such a graph, there is an arc $(u,v)$ if interval $u$ contains interval $v$, and there is an edge $\{u,v\}$ if $u$ and $v$ overlap. We show that these graphs can be recognized in polynomial time, that coloring them with the minimum number of colors is NP-hard, and that there is a 2-approximation algorithm for coloring.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【NeurIPS2019】图变换网络:Graph Transformer Network
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月14日
Arxiv
0+阅读 · 2023年11月11日
Arxiv
0+阅读 · 2023年11月10日
VIP会员
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员