Principal stratification is a general framework for studying causal mechanisms involving post-treatment variables. When estimating principal causal effects, the principal ignorability assumption is commonly invoked, which we study in detail in this manuscript. Our first key contribution is studying a commonly used strategy of using parametric models to jointly model the outcome and principal strata without requiring the principal ignorability assumption. We show that even if the joint distribution of principal strata is known, this strategy necessarily leads to only partial identification of causal effects, even under very simple and correctly specified outcome models. While principal ignorability can lead to point identification in this setting, we discuss alternative, weaker assumptions and show how they lead to more informative partial identification regions. An additional contribution is that we provide theoretical support to strategies used in the literature for identifying association parameters that govern the joint distribution of principal strata. We prove that this is possible, but only if the principal ignorability assumption is violated. Additionally, due to partial identifiability of causal effects even when these association parameters are known, we show that these association parameters are only identifiable under strong parametric constraints. Lastly, we extend these results to more flexible semiparametric and nonparametric Bayesian models.
翻译:暂无翻译