The impact of online social media on societal events and institutions is profound; and with the rapid increases in user uptake, we are just starting to understand its ramifications. Social scientists and practitioners who model online discourse as a proxy for real-world behavior, often curate large social media datasets. A lack of available tooling aimed at non-data science experts frequently leaves this data (and the insights it holds) underutilized. Here, we propose birdspotter -- a tool to analyze and label Twitter users --, and birdspotter.ml -- an exploratory visualizer for the computed metrics. birdspotter provides an end-to-end analysis pipeline, from the processing of pre-collected Twitter data, to general-purpose labeling of users, and estimating their social influence, within a few lines of code. The package features tutorials and detailed documentation. We also illustrate how to train birdspotter into a fully-fledged bot detector that achieves better than state-of-the-art performances without making any Twitter API online calls, and we showcase its usage in an exploratory analysis of a topical COVID-19 dataset.
翻译:在线社交媒体对社会事件和机构的影响是深刻的;随着用户接受量的迅速增加,我们才刚刚开始理解其影响。社会科学家和从业者将在线话语作为真实世界行为的代言人,往往会整理大量的社交媒体数据集。缺乏针对非数据科学专家的可用工具经常使这些数据(及其所持有的见解)得不到充分利用。在这里,我们提议了鸟食者 -- -- 一种分析和标签Twitter用户的工具 -- -- 和鸟食者.ml -- -- 一种用于计算计量的探索性视觉工具。鸟食者提供了从处理预先收集的Twitter数据到通用用户标签和估计其社会影响力的端到端分析管道。这套工具的特点是辅导和详细文件。我们还说明了如何将鸟食者训练成一个完全成熟的机器人探测器,其成绩优于最先进的状态,而无需在Twitter API 网上打电话,我们展示其在对CVID-19数据集进行探索性分析时的使用情况。