Predicting fetal weight at birth is an important aspect of perinatal care, particularly in the context of antenatal management, which includes the planned timing and the mode of delivery. Accurate prediction of weight using prenatal ultrasound is challenging as it requires images of specific fetal body parts during advanced pregnancy which is difficult to capture due to poor quality of images caused by the lack of amniotic fluid. As a consequence, predictions which rely on standard methods often suffer from significant errors. In this paper we propose the Residual Transformer Module which extends a 3D ResNet-based network for analysis of 2D+t spatio-temporal ultrasound video scans. Our end-to-end method, called BabyNet, automatically predicts fetal birth weight based on fetal ultrasound video scans. We evaluate BabyNet using a dedicated clinical set comprising 225 2D fetal ultrasound videos of pregnancies from 75 patients performed one day prior to delivery. Experimental results show that BabyNet outperforms several state-of-the-art methods and estimates the weight at birth with accuracy comparable to human experts. Furthermore, combining estimates provided by human experts with those computed by BabyNet yields the best results, outperforming either of other methods by a significant margin. The source code of BabyNet is available at https://github.com/SanoScience/BabyNet.


翻译:分娩时胎儿体重预测是围产期护理的一个重要方面,特别是在产前管理方面,这包括计划的时间和分娩方式。精确预测使用产前超声波对体重的预测具有挑战性,因为它需要早孕期胎儿特定器官的图像,由于缺乏羊膜液导致图像质量差,难以捕捉。因此,依赖标准方法的预测往往出现重大错误。在本文中,我们提议残余变异器模块,扩展基于3D ResNet的网络,用于分析2D+tspatspatio-时空超声波视频扫描。我们的端对端方法,称为BabyNet,根据胎儿超声波视频扫描自动预测胎儿身体部分的胎儿体重。我们使用由225 2D 胎儿超声波视频组成的专门临床数据集评估婴儿网,在分娩前一天75名病人怀孕情况。实验结果显示,婴儿网超越了几个状态技术方法,估计出生体重,与人类专家的准确性能相当。此外,我们用胎儿超声波扫描仪/网络提供的重要比例。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
19+阅读 · 2020年12月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员