It can be easy and even fun to sketch humans in different poses. In contrast, creating those same poses on a 3D graphics "mannequin" is comparatively tedious. Yet 3D body poses are necessary for various downstream applications. We seek to preserve the convenience of 2D sketching while giving users of different skill levels the flexibility to accurately and more quickly pose\slash refine a 3D mannequin. At the core of the interactive system, we propose a machine-learning model for inferring the 3D pose of a CG mannequin from sketches of humans drawn in a cylinder-person style. Training such a model is challenging because of artist variability, a lack of sketch training data with corresponding ground truth 3D poses, and the high dimensionality of human pose-space. Our unique approach to synthesizing vector graphics training data underpins our integrated ML-and-kinematics system. We validate the system by tightly coupling it with a user interface, and by performing a user study, in addition to quantitative comparisons.
翻译:在3D图形“mannequin”上画出相同的外形,相对而言,相对而言,相对而言,在3D图形“mannequin”上画出同样的外形是比较乏味的。然而,3D体面是各种下游应用所必须的。我们力求保持2D草图的方便性,同时给予不同技能水平的用户准确和更快地画出3D人造相的灵活性。在互动系统的核心,我们提出了一个机器学习模型,用以从以圆柱形人风格绘制的人类草图中推导出3D人造相的CG 人造相。培训这种模型具有挑战性,因为艺术家的变异性、缺少带有相应的地面真象 3D 的草图培训数据,以及人造空间的高度维度。我们将矢量图像培训数据合成的独有的方法支撑了我们综合的 ML-and-kinatic系统。我们通过与用户界面的密切结合和进行用户研究来验证这个系统。除了进行定量比较之外,我们还进行了用户研究,从而验证这个系统。