We consider the problem of finding an approximate solution to $\ell_1$ regression while only observing a small number of labels. Given an $n \times d$ unlabeled data matrix $X$, we must choose a small set of $m \ll n$ rows to observe the labels of, then output an estimate $\widehat{\beta}$ whose error on the original problem is within a $1 + \varepsilon$ factor of optimal. We show that sampling from $X$ according to its Lewis weights and outputting the empirical minimizer succeeds with probability $1-\delta$ for $m > O(\frac{1}{\varepsilon^2} d \log \frac{d}{\varepsilon \delta})$. This is analogous to the performance of sampling according to leverage scores for $\ell_2$ regression, but with exponentially better dependence on $\delta$. We also give a corresponding lower bound of $\Omega(\frac{d}{\varepsilon^2} + (d + \frac{1}{\varepsilon^2}) \log\frac{1}{\delta})$.


翻译:我们考虑在只观察少量标签的同时找到大约1美元回归的近似解决办法。 如果有1美元/ 乘以1美元/ 乘以未贴标签的数据矩阵 $X$, 我们就必须选择一小套 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 瓦列普 / 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 瓦列普 / / 美元/ 美元/ / 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ / / 美元/ 美元/ 美元/ / / 美元/ 美元/ 美元/ 美元/ 美元/ / / / 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 瓦/ 美元/ 美元/ 美元/ / / 美元/ 美元/ 美元/ 美元/ 美元/ / / 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ / / 美元/ / / 美元/ 美元/ 美元/ / 美元/ / / 美元/ 美元/ 美元/ / / / 美元/ / / / / / / / / / / 美元/ / / / 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年7月14日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月12日
Arxiv
0+阅读 · 2021年7月10日
Top
微信扫码咨询专知VIP会员