We consider the problem of finding an approximate solution to $\ell_1$ regression while only observing a small number of labels. Given an $n \times d$ unlabeled data matrix $X$, we must choose a small set of $m \ll n$ rows to observe the labels of, then output an estimate $\widehat{\beta}$ whose error on the original problem is within a $1 + \varepsilon$ factor of optimal. We show that sampling from $X$ according to its Lewis weights and outputting the empirical minimizer succeeds with probability $1-\delta$ for $m > O(\frac{1}{\varepsilon^2} d \log \frac{d}{\varepsilon \delta})$. This is analogous to the performance of sampling according to leverage scores for $\ell_2$ regression, but with exponentially better dependence on $\delta$. We also give a corresponding lower bound of $\Omega(\frac{d}{\varepsilon^2} + (d + \frac{1}{\varepsilon^2}) \log\frac{1}{\delta})$.
翻译:我们考虑在只观察少量标签的同时找到大约1美元回归的近似解决办法。 如果有1美元/ 乘以1美元/ 乘以未贴标签的数据矩阵 $X$, 我们就必须选择一小套 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 瓦列普 / 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 瓦列普 / / 美元/ 美元/ / 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ / / 美元/ 美元/ 美元/ / / 美元/ 美元/ 美元/ 美元/ 美元/ / / / 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 瓦/ 美元/ 美元/ 美元/ / / 美元/ 美元/ 美元/ 美元/ 美元/ / / 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ / / 美元/ / / 美元/ 美元/ 美元/ / 美元/ / / 美元/ 美元/ 美元/ / / / 美元/ / / / / / / / / / / 美元/ / / / 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/ 美元/