Chemical kinetics consists of the phenomenological framework for the disentanglement of reaction mechanisms, optimization of reaction performance and the rational design of chemical processes. Here, we utilize feed-forward artificial neural networks as basis functions for the construction of surrogate models to solve ordinary differential equations (ODEs) that describe microkinetic models (MKMs). We present an algebraic framework for the mathematical description and classification of reaction networks, types of elementary reaction, and chemical species. Under this framework, we demonstrate that the simultaneous training of neural nets and kinetic model parameters in a regularized multiobjective optimization setting leads to the solution of the inverse problem through the estimation of kinetic parameters from synthetic experimental data. We probe the limits at which kinetic parameters can be retrieved as a function of knowledge about the chemical system states over time, and assess the robustness of the methodology with respect to statistical noise. This surrogate approach to inverse kinetic ODEs can assist in the elucidation of reaction mechanisms based on transient data.
翻译:化学动因由反应机制脱钩、 优化反应性能和合理设计化学过程的分解的苯蛋白框架组成。 在这里, 我们利用饲料向前人工神经网络作为构建替代模型的基础功能, 以解决描述微生物模型的普通差异方程式( ODs) 。 我们为反应网络、 基本反应类型和化学物种的数学描述和分类提供了一个代数框架。 在这个框架内, 我们证明在常规化多目标优化设置中同时培训神经网和动能模型参数有助于通过估计合成实验数据的动能参数解决反向问题。 我们探寻动能参数的限度,作为关于化学系统长期状态的知识的功能,并评估在统计噪音方面方法的稳健性。 这种反动动能分子的代用方法有助于基于瞬时数据的反应机制的解析。