Changes in the statistical properties of a stochastic process are typically assumed to occur via change-points, which demark instantaneous moments of complete and total change in process behavior. In cases where these transitions occur gradually, this assumption can result in a reduced ability to properly identify and respond to process change. With this observation in mind, we introduce a novel change-dynamic model for the online detection of gradual change in a Bayesian framework, in which change-points are used within a hierarchical model to indicate moments of gradual change onset or termination. We apply this model to synthetic data and EEG readings drawn during epileptic seizure, where we find our change-dynamic model can enable faster and more accurate identification of gradual change than traditional change-point models allow.
翻译:随机过程统计特性的变化通常假定通过变化点发生,这些变化点标志着过程行为完全和彻底变化的瞬时时刻刻。在这种转变逐渐发生的情况下,这种假设可能会降低正确识别和应对过程变化的能力。考虑到这一观察,我们引入了一种新的变化动力模型,用于在线检测贝叶斯框架的逐渐变化,在这个模型中,在等级模型中使用变化点来显示逐渐变化的开始或结束。我们将这一模型应用于在癫痫发作期间提取的合成数据和 EEG 读数,在那里,我们发现我们的变化动力模型能够比传统的改变点模型更快和更准确地识别渐进变化。