Uncertainty quantification plays an important role in applications that involve simulating ensembles of trajectories of dynamical systems. Conrad et al. (Stat. Comput., 2017) proposed randomisation of deterministic time integration methods as a strategy for quantifying uncertainty due to time discretisation. We consider this strategy for systems that are described by deterministic, possibly non-autonomous operator differential equations defined on a Banach space or a Gelfand triple. We prove pathwise and expected error bounds on the random trajectories, given an assumption on the local truncation error of the underlying deterministic time integration and an assumption that the absolute moments of the random variables decay with the time step. Our analysis shows that the error analysis for differential equations in finite-dimensional Euclidean space carries over to infinite-dimensional settings.


翻译:不确定性量化在模拟动态系统轨迹集合的应用中起着重要作用。 Conrad 等人(Stat. Comput., 2017年)提议将确定性时间整合方法随机化作为量化因时间分化造成的不确定性的战略。我们认为这一战略适用于由确定性、可能是非自主操作者在Banach空间或Gelfand三重上定义的差别方程式描述的系统。我们证明,根据对潜在确定性时间整合的本地轨迹错误的假设,以及随机变量的绝对时刻随着时间步骤衰变的假设,我们证明,对有限维度Euclidean空间差异方程式的错误分析可以延续到无限的设置。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
已删除
将门创投
4+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月25日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员