In this work, we describe an approach to stably simulate the 3D isotropic elastic wave propagation using finite difference discretization on staggered grids with nonconforming interfaces. Specifically, we consider simulation domains composed of layers of uniform grids with different grid spacings, separated by planar interfaces. This discretization setting is motivated by the observation that wave speeds of earth media tend to increase with depth due to sedimentation and consolidation processes. We demonstrate that the layer-wise finite difference discretization approach has the potential to significantly reduce the simulation cost, compared to its counterpart that uses holistically uniform grids. Such discretizations are enabled by summation-by-parts finite difference operators, which are standard finite difference operators with special adaptations near boundaries or interfaces, and simultaneous approximation terms, which are penalty terms appended to the discretized system to weakly impose boundary or interface conditions. Combined with specially designed interpolation operators, the discretized system is shown to preserve the energy-conserving property of the continuous elastic wave equation, and a fortiori ensure the stability of the simulation. Numerical examples are presented to corroborate these analytical developments.


翻译:在这项工作中,我们描述一种方法,用在不兼容界面的交错格格格上使用有限的差异分解来模拟3D异地弹性波的传播。具体地说,我们考虑模拟域,由不同网格间距的统一网格层组成,由平板界面分离。这种离异设置的动机是观察到土介质的波速随着沉积和合并过程的深度而增加。我们证明,与使用整体统一的格子的对等器相比,从层到层的有限差异分解法有可能大幅降低模拟成本。这种离异化是通过逐部分的有限差异操作器加以促成的,这些操作器是标准的有限差异操作器,在边界或界面附近作特殊调整,同时使用近似近似条件作为离散系统附加的处罚条件,以弱化边界或界面条件。我们发现,离异化系统与专门设计的内层操作器结合,可以保护连续弹性波方方程式的节能特性,并且更严格地确保模拟的稳定性。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
280+阅读 · 2019年10月9日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【干货】2019年国际学术会议资讯 (含截稿日期)
中国自动化学会
9+阅读 · 2018年11月5日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月1日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
280+阅读 · 2019年10月9日
相关资讯
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
【干货】2019年国际学术会议资讯 (含截稿日期)
中国自动化学会
9+阅读 · 2018年11月5日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员