Video Copy Detection (VCD) has been developed to identify instances of unauthorized or duplicated video content. This paper presents our first and second solutions to the Meta AI Video Similarity Challenge (VSC22), CVPR 2023. In order to compete in this challenge, we propose Feature-Compatible Progressive Learning (FCPL) for VCD. FCPL trains various models that produce mutually-compatible features, meaning that the features derived from multiple distinct models can be directly compared with one another. We find this mutual compatibility enables feature ensemble. By implementing progressive learning and utilizing labeled ground truth pairs, we effectively gradually enhance performance. Experimental results demonstrate the superiority of the proposed FCPL over other competitors. Our code is available at https://github.com/WangWenhao0716/VSC-DescriptorTrack-Submission and https://github.com/WangWenhao0716/VSC-MatchingTrack-Submission.
翻译:视频剽窃检测(VCD)已经被开发出来用于识别未经授权或重复的视频内容。本文提出了我们在CVPR 2023的Meta AI视频相似性挑战(VSC22)中针对VCD提供的第一和第二个解决方案。为了参加这个挑战,我们提出了兼容特征渐进学习(FCPL)用于VCD。FCPL训练不同的模型来产生互相兼容的特征,意味着从多个不同模型中得出的特征可以直接进行比较。我们发现这种互相兼容性能够实现特征集成。通过实现渐进学习和利用标记的实际标签对,我们有效地逐步提高了性能。实验结果表明,所提出的FCPL优于其他竞争对手。我们的代码可在https://github.com/WangWenhao0716/VSC-DescriptorTrack-Submission和https://github.com/WangWenhao0716/VSC-MatchingTrack-Submission获得。