We introduce a variant of PCPs, that we refer to as rectangular PCPs, wherein proofs are thought of as square matrices, and the random coins used by the verifier can be partitioned into two disjoint sets, one determining the row of each query and the other determining the column. We construct PCPs that are efficient, short, smooth and (almost-)rectangular. As a key application, we show that proofs for hard languages in $NTIME(2^n)$, when viewed as matrices, are rigid infinitely often. This strengthens and simplifies a recent result of Alman and Chen [FOCS, 2019] constructing explicit rigid matrices in FNP. Namely, we prove the following theorem: - There is a constant $\delta \in (0,1)$ such that there is an FNP-machine that, for infinitely many $N$, on input $1^N$ outputs $N \times N$ matrices with entries in $\mathbb{F}_2$ that are $\delta N^2$-far (in Hamming distance) from matrices of rank at most $2^{\log N/\Omega(\log \log N)}$. Our construction of rectangular PCPs starts with an analysis of how randomness yields queries in the Reed--Muller-based outer PCP of Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan [SICOMP, 2006; CCC, 2005]. We then show how to preserve rectangularity under PCP composition and a smoothness-inducing transformation. This warrants refined and stronger notions of rectangularity, which we prove for the outer PCP and its transforms.
翻译:我们引入了一种五氯苯酚的变体, 我们称之为矩形五氯苯酚, 其证据被视为平方基质, 而核查者使用的随机硬币可以分割成两个脱节的组合, 一个决定每个查询的行, 另一个决定柱形。 我们建造了一个高效、 短、 光和( 几乎) 矩形的五氯苯酚。 作为关键应用程序, 我们显示硬语言的证明( 以美元计), 当被看成基质时, 总是很僵硬的。 这强化和简化了Alman和Chen的最新结果[ FOCS, 20199] 在FNPNP中构建明确的硬基质矩阵。 也就是说, 我们证明了以下的理论: 固定 $delta =in ( 0, 1美元), 如此的FNPNPER 机器, 在投入的1NNNNN美元 =x times, 美元为基底基质, 以 $\ mathb{F\2$ 。 证明 $Ndelationality, 在2005年的内, 我们的硬质的硬质的硬质的硬质变形的内, 开始分析显示我们的硬质的硬质的硬质的硬质的硬质的硬质的硬质的硬质的硬质的硬质的硬质的硬基质的硬质的硬质的硬质的硬质的硬质的基质的基质的基质的基质, 。