We show, assuming the Strong Exponential Time Hypothesis, that for every $\varepsilon > 0$, approximating undirected unweighted Diameter on $n$-vertex $n^{1+o(1)}$-edge graphs within ratio $7/4 - \varepsilon$ requires $m^{4/3 - o(1)}$ time. This is the first result that conditionally rules out a near-linear time $5/3$-approximation for undirected Diameter.
翻译:假设强烈的指数时间假说,我们显示,对于每1美元 > 0美元,大约是7/4美元- 4美元- 4/3美元- o(1)美元比例范围内的未加权非加权直径图。这是第一个有条件地排除近线时间5/3美元与非定向直径的直径接近比例的结果。