Whereas quantum complexity theory has traditionally been concerned with problems arising from classical complexity theory (such as computing boolean functions), it also makes sense to study the complexity of inherently quantum operations such as constructing quantum states or performing unitary transformations. With this motivation, we define models of interactive proofs for synthesizing quantum states and unitaries, where a polynomial-time quantum verifier interacts with an untrusted quantum prover, and a verifier who accepts also outputs an approximation of the target state (for the state synthesis problem) or the result of the target unitary applied to the input state (for the unitary synthesis problem); furthermore there should exist an "honest" prover which the verifier accepts with probability 1. Our main result is a "state synthesis" analogue of the inclusion $\mathsf{PSPACE} \subseteq \mathsf{IP}$: any sequence of states computable by a polynomial-space quantum algorithm (which may run for exponential time) admits an interactive protocol of the form described above. Leveraging this state synthesis protocol, we also give a unitary synthesis protocol for polynomial space-computable unitaries that act nontrivially on only a polynomial-dimensional subspace. We obtain analogous results in the setting with multiple entangled provers as well.


翻译:虽然量子复杂性理论传统上一直关注传统复杂理论(如计算布尔函数)引起的问题,但研究诸如构建量子状态或进行单一变换等内在量子操作的复杂性(如计算布尔函数)也是有道理的。有了这一动机,我们定义了合成量子状态和单位的交互式证据模型,其中多元时间量子核查器与不可信的量子检验器相互作用,而接受目标状态近似值(国家合成问题)或输入状态(单一合成问题)应用的目标单一结果的核查器,也是合理的;此外,应该有一个“诚实”验证器,核查者有可能接受。1 我们的主要结果是一个包含 $\ mathsf{PSPACE} 的“状态合成”类比体,其中多位量子验证器与一个以多位空间量子算算(可能运行于指数时间)比较的国家序列都接受上述形式的互动协议。通过将这一国家合成协议配置为非国家合成协议,我们还将一个单一的复合空间合成器作为多元空间的子空间结果,我们只将一个单一的合成器作为多维空间的模型,在多维空间结果上只获得一个统一的组合。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
已删除
将门创投
6+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
《科学》(20190517出版)一周论文导读
科学网
5+阅读 · 2019年5月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2022年1月14日
Arxiv
0+阅读 · 2022年1月13日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
已删除
将门创投
6+阅读 · 2019年7月11日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
《科学》(20190517出版)一周论文导读
科学网
5+阅读 · 2019年5月19日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员