In line with the growing trend of using machine learning to help solve combinatorial optimisation problems, one promising idea is to improve node selection within a mixed integer programming (MIP) branch-and-bound tree by using a learned policy. Previous work using imitation learning indicates the feasibility of acquiring a node selection policy, by learning an adaptive node searching order. In contrast, our imitation learning policy is focused solely on learning which of a node's children to select. We present an offline method to learn such a policy in two settings: one that comprises a heuristic by committing to pruning of nodes; one that is exact and backtracks from a leaf to guarantee finding the optimal integer solution. The former setting corresponds to a child selector during plunging, while the latter is akin to a diving heuristic. We apply the policy within the popular open-source solver SCIP, in both heuristic and exact settings. Empirical results on five MIP datasets indicate that our node selection policy leads to solutions significantly more quickly than the state-of-the-art precedent in the literature. While we do not beat the highly-optimised SCIP state-of-practice baseline node selector in terms of solving time on exact solutions, our heuristic policies have a consistently better optimality gap than all baselines, if the accuracy of the predictive model is sufficient. Further, the results also indicate that, when a time limit is applied, our heuristic method finds better solutions than all baselines in the majority of problems tested. We explain the results by showing that the learned policies have imitated the SCIP baseline, but without the latter's early plunge abort. Our recommendation is that, despite the clear improvements over the literature, this kind of MIP child selector is better seen in a broader approach using learning in MIP branch-and-bound tree decisions.


翻译:随着利用机器学习帮助解决组合优化问题的趋势不断增长,一个有希望的想法是通过使用学习的政策,在混合整数编程(MIP)分支和树上改进节点选择。以前使用模仿学习的工作表明通过学习适应节点搜索顺序获得节点选择政策的可行性。相比之下,我们的模仿学习政策完全侧重于学习节点的孩子选择哪个。我们展示了一种脱机方法,在两种情况下学习这样的政策:一种是超速的节点;一种是精确的和反向的,从叶子中确保找到最佳整数解决方案。以前使用模仿学习的学习表明通过学习适应性节点的节点选择政策是否可行。在超速和精确的环境下,我们所选择的节点选择政策比当前最短的节点选择要快得多;在文献中,我们没有更精确地解释儿童选择选择方法,而后一种更精确的方法则是在快速的源码上应用开放源码 SCIP 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员