In this paper, we address the problem of global-scale image geolocation, proposing a mixed classification-retrieval scheme. Unlike other methods that strictly tackle the problem as a classification or retrieval task, we combine the two practices in a unified solution leveraging the advantages of each approach with two different modules. The first leverages the EfficientNet architecture to assign images to a specific geographic cell in a robust way. The second introduces a new residual architecture that is trained with contrastive learning to map input images to an embedding space that minimizes the pairwise geodesic distance of same-location images. For the final location estimation, the two modules are combined with a search-within-cell scheme, where the locations of most similar images from the predicted geographic cell are aggregated based on a spatial clustering scheme. Our approach demonstrates very competitive performance on four public datasets, achieving new state-of-the-art performance in fine granularity scales, i.e., 15.0% at 1km range on Im2GPS3k.
翻译:在本文中,我们处理全球规模图像地理定位问题,提出一个混合分类-检索计划。与其他严格处理分类或检索任务问题的方法不同,我们用两个不同的模块将这两种做法结合起来,利用每种方法的优势,用两种不同的模块来统一解决问题。第一个是利用高效网络架构,以强有力的方式将图像分配给特定的地理单元。第二个是引入一个新的残余结构,经过对比学习培训,将输入图像映射到一个嵌入空间,以尽量减少同一位置图像的对称大地测量距离。对于最后的位置估计,两个模块与一个搜索-内部细胞计划相结合,其中预测地理单元中最相似图像的位置以空间组合计划为基础汇总。我们的方法在四个公共数据集上展示了非常有竞争力的性能,在精细的颗粒度尺度上,即Im2GPS3k上达到15.0%的1千米范围。