Modern convolutional networks are not shift-invariant, as small input shifts or translations can cause drastic changes in the output. Commonly used downsampling methods, such as max-pooling, strided-convolution, and average-pooling, ignore the sampling theorem. The well-known signal processing fix is anti-aliasing by low-pass filtering before downsampling. However, simply inserting this module into deep networks leads to performance degradation; as a result, it is seldomly used today. We show that when integrated correctly, it is compatible with existing architectural components, such as max-pooling. The technique is general and can be incorporated across layer types and applications, such as image classification and conditional image generation. In addition to increased shift-invariance, we also observe, surprisingly, that anti-aliasing boosts accuracy in ImageNet classification, across several commonly-used architectures. This indicates that anti-aliasing serves as effective regularization. Our results demonstrate that this classical signal processing technique has been undeservingly overlooked in modern deep networks. Code and anti-aliased versions of popular networks will be made available at \url{https://richzhang.github.io/antialiased-cnns/} .


翻译:现代革命网络不是易变的, 因为小输入变换或翻译可以导致产出的急剧变化。 常用的下游抽样方法, 如最大集合、 螺旋进化和平均集合, 忽略抽样理论。 众所周知的信号处理修补方法在下取样之前通过低通过滤器进行反诈骗。 但是, 简单地将这个模块插入深层网络会导致性能退化; 结果, 它今天很少被使用 。 我们显示, 当整合正确时, 它与现有建筑组件, 如最大集合 相容。 技术是通用的, 可以跨层类型和应用程序, 如图像分类和有条件图像生成。 除了增加变换外, 我们还观察到, 令人惊讶的是, 反变异能提高了图像网络分类的准确性, 跨越了几个常用的架构。 这表明, 反变异可以有效地规范。 我们的结果表明, 古典信号处理技术在现代深层网络中被忽略了。 代码和反变异版本 / 版本 将可在 am- arrich/ annqius 上提供。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员