Despite the success of large-scale empirical risk minimization (ERM) at achieving high accuracy across a variety of machine learning tasks, fair ERM is hindered by the incompatibility of fairness constraints with stochastic optimization. In this paper, we propose the fair empirical risk minimization via exponential R\'enyi mutual information (FERMI) framework. FERMI is built on a stochastic estimator for exponential R\'enyi mutual information (ERMI), an information divergence measuring the degree of the dependence of predictions on sensitive attributes. Theoretically, we show that ERMI upper bounds existing popular fairness violation metrics, thus controlling ERMI provides guarantees on other commonly used violations, such as $L_\infty$. We derive an unbiased estimator for ERMI, which we use to derive the FERMI algorithm. We prove that FERMI converges for demographic parity, equalized odds, and equal opportunity notions of fairness in stochastic optimization. Empirically, we show that FERMI is amenable to large-scale problems with multiple (non-binary) sensitive attributes and non-binary targets. Extensive experiments show that FERMI achieves the most favorable tradeoffs between fairness violation and test accuracy across all tested setups compared with state-of-the-art baselines for demographic parity, equalized odds, equal opportunity. These benefits are especially significant for non-binary classification with large sensitive sets and small batch sizes, showcasing the effectiveness of the FERMI objective and the developed stochastic algorithm for solving it.
翻译:尽管在各种机器学习任务中成功地实现了高度精准性,大规模的经验风险最小化(ERMI)取得了成功,但公平的机构风险管理却因公平限制与随机优化不相容而受到阻碍。在本文件中,我们提出通过指数R\'enyi相互信息(FERMI)框架来公平的经验风险最小化。FERMI建在指数R\'enyi相互信息(ERMI)的随机估计值之上,这是衡量预测对敏感属性依赖程度的一种信息差异。理论上,我们表明ERMI的上限是现有流行的违反公平标准上限,因此控制ERMI为其他常用的违规行为提供保障,如美元。我们提出了通过指数R\'enyyi相互信息(FERMI)框架来公平性地尽量减少风险风险风险。我们证明,FERMI在人口均等、均等概率和公平性优化的公平性概念上,对多种(非二元)敏感属性和非二元目标进行控制,从而控制ERMI为其他常用的违约行为提供保障。我们为ERMI的不偏袒性和非二元目标进行公正的非估算。我们用公平性标准测试了整个公平性交易的公平性标准,从而实现了公平性公平性交易的公平性标准,并测试了所有公平性公平性交易的公平性公平性公平性标准,并测试。