We describe Bayes factors functions based on z, t, $\chi^2$, and F statistics and the prior distributions used to define alternative hypotheses. The non-local alternative prior distributions are centered on standardized effects, which index the Bayes factor function. The prior densities include a dispersion parameter that models the variation of effect sizes across replicated experiments. We examine the convergence rates of Bayes factor functions under true null and true alternative hypotheses. Several examples illustrate the application of the Bayes factor functions to replicated experimental designs and compare the conclusions from these analyses to other default Bayes factor methods.
翻译:暂无翻译