The problem of classifying high-dimensional shapes in real-world data grows in complexity as the dimension of the space increases. For the case of identifying convex shapes of different geometries, a new classification framework has recently been proposed in which the intersections of a set of one-dimensional representations, called rays, with the boundaries of the shape are used to identify the specific geometry. This ray-based classification (RBC) has been empirically verified using a synthetic dataset of two- and three-dimensional shapes (Zwolak et al. in Proceedings of Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020), Vancouver, Canada [December 11, 2020], arXiv:2010.00500, 2020) and, more recently, has also been validated experimentally (Zwolak et al., PRX Quantum 2:020335, 2021). Here, we establish a bound on the number of rays necessary for shape classification, defined by key angular metrics, for arbitrary convex shapes. For two dimensions, we derive a lower bound on the number of rays in terms of the shape's length, diameter, and exterior angles. For convex polytopes in $\mathbb{R}^N$, we generalize this result to a similar bound given as a function of the dihedral angle and the geometrical parameters of polygonal faces. This result enables a different approach for estimating high-dimensional shapes using substantially fewer data elements than volumetric or surface-based approaches.


翻译:随着空间层面的扩大,对现实世界数据中高维形状的分类问题日益复杂。对于确定不同地理比例的二次机器学习和物理科学讲习班(NEURIPS 2020)议事录(加拿大温哥华,[12月11日,2020年],ArXiv:2010.00500,2020),最近提出了一个新的分类框架,其中使用一组一维表达式的交叉点,称为射线,并用形状的界限来确定具体的几何。这种基于光的分类(RBC)已经用一个由二维和三维形状组成的合成数据集(Zwolak 和 al. ) 进行了经验性核查。对于机器学习和物理科学第三次讲习班(NEurIPS 2020)议事录(加拿大温哥华,[12月11日,2020年],ArXiv:2010.00500,2020),以及最近提出的一个分类框架也得到了实验性验证(Zwolak 和 al.,PRX Quantum 2, 020335, 2021)。在这里,我们用基于关键角度的直径测量度测量度方法界定了形状分类所需的光线数,用于直径直径直径的直径直径直径直径的直径的直径直径函数函数值值值值值值,我们为直径的直径等直径的直径值的直径。我们为直径值的直径的直径的直径值的直径值的直径函数的直径函数,我们为直径。这里的直径值为直径值的直径值的直径。这里,我们根据从直径的直径的直径的直径的直至直径的直径的直至直径的直径。在这里,我们根据一个直径的直径的直径的直径的直至直径的直径的直径的直至直径的直径的直径的直径的直径。这里的直径的直径的直径的直径的直径的直径根直径的直径根根直径根直径的直径的直径根直径的直径的直径,这里,这里,这里,我们根据测测算值的直径。这里,我们的直径的直径的直径

0
下载
关闭预览

相关内容

图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月3日
VIP会员
相关VIP内容
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员