Remote sensing scene classification deals with the problem of classifying land use/cover of a region from images. To predict the development and socioeconomic structures of cities, the status of land use in regions are tracked by the national mapping agencies of countries. Many of these agencies use land use types that are arranged in multiple levels. In this paper, we examined the efficiency of a hierarchically designed CNN based framework that is suitable for such arrangements. We use NWPU-RESISC45 dataset for our experiments and arranged this data set in a two level nested hierarchy. We have two cascaded deep CNN models initiated using DenseNet-121 architectures. We provide detailed empirical analysis to compare the performances of this hierarchical scheme and its non hierarchical counterpart, together with the individual model performances. We also evaluated the performance of the hierarchical structure statistically to validate the presented empirical results. The results of our experiments show that although individual classifiers for different sub-categories in the hierarchical scheme perform well, the accumulation of classification errors in the cascaded structure prevents its classification performance from exceeding that of the non hierarchical deep model.


翻译:为了预测城市的发展和社会经济结构,各国的国家测绘机构对各地区的土地利用状况进行跟踪,其中许多机构使用多层次的土地利用类型。在本文中,我们研究了一个适合此类安排的、按等级设计的有线电视新闻网框架的效率。我们用NWPU-RESISC45数据集进行实验,并将这一数据集安排在两个层次的嵌套中。我们用DenseNet-121结构启动了两个有线电视新闻网级级深层模型。我们提供了详细的实证分析,以比较这一等级制度及其非等级对应机制的绩效,以及单个模型的绩效。我们还从统计角度评估了等级结构的绩效,以验证所提出的实证结果。我们的实验结果表明,虽然分级制度中不同子类的单个分类人员表现良好,但分级结构中分类错误的累积使得其分类业绩无法超过非等级深层次模型的绩效。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
13+阅读 · 2019年11月14日
Using Scene Graph Context to Improve Image Generation
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员