The traditional dialogue state tracking (DST) task tracks the dialogue state given the past history of user and agent utterances. This paper proposes to replace the utterances before the current turn with a formal representation, which is used as the context in a semantic parser mapping the current user utterance to its formal meaning. In addition, we propose TOC (Task-Oriented Context), a formal dialogue state representation. This approach eliminates the need to parse a long history of natural language utterances; however, it adds complexity to the dialogue annotations. We propose Skim, a contextual semantic parser, trained with a sample-efficient training strategy: (1) a novel abstract dialogue state machine to synthesize training sets with TOC annotations; (2) data augmentation with automatic paraphrasing, (3) few-shot training, and (4) self-training. This paper also presents MultiWOZ 2.4, which consists of the full test set and a partial validation set of MultiWOZ 2.1, reannotated with the TOC representation. Skim achieves 78% turn-by-turn exact match accuracy and 85% slot accuracy, while our annotation effort amounts to only 2% of the training data used in MultiWOZ 2.1. The MultiWOZ 2.4 dataset will be released upon publication.


翻译:传统对话状态跟踪( DST) 任务跟踪基于用户和代理词的过去历史的对话状态。 本文建议用正式代表来取代当前转弯前的对话状态。 正式代表将取代当前转弯前的语句。 正式代表将用作描述当前用户表达形式的正式含义的语义分析器的上下文。 此外, 我们提议TOC( 以目标为主的环境), 正式对话状态代表。 这种方法消除了分析长长的自然语言表达史的必要性; 但是, 增加了对话说明的复杂性。 我们提议Skim, 一个背景语义分析器, 受过抽样高效培训战略培训:(1) 一个新型的抽象对话状态机器, 用TOC 说明来合成培训组合; (2) 数据增强, 自动进行翻动, (3) 几发式培训, (4) 自我培训。 本文还介绍了多WOZ 2. 的完整测试集和多 WOZ 2. 部分验证集, 加上TO 的注释。 SKIM 实现 78% 翻转精确和85% 位置精确, 而我们的数据使用 2. 1 MO 数据只用于 DO 。

0
下载
关闭预览

相关内容

工业互联网平台发展与展望,33页ppt
专知会员服务
68+阅读 · 2021年3月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
BERT实现QA中的问句语义相似度计算
AINLP
4+阅读 · 2020年6月29日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
一文读懂智能对话系统
数据派THU
16+阅读 · 2018年1月27日
多轮对话之对话管理:Dialog Management
PaperWeekly
18+阅读 · 2018年1月15日
Neural Approaches to Conversational AI
Arxiv
8+阅读 · 2018年12月13日
CoQA: A Conversational Question Answering Challenge
Arxiv
7+阅读 · 2018年8月21日
Arxiv
6+阅读 · 2018年5月22日
Arxiv
6+阅读 · 2017年12月2日
VIP会员
相关VIP内容
工业互联网平台发展与展望,33页ppt
专知会员服务
68+阅读 · 2021年3月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Top
微信扫码咨询专知VIP会员