Recent breakthroughs based on big/foundation models reveal a vague avenue for artificial intelligence, that is, bid data, big/foundation models, big learning, $\cdots$. Following that avenue, here we elaborate on the newly introduced big learning. Specifically, big learning comprehensively exploits the available information inherent in large-scale complete/incomplete data, by simultaneously learning to model many-to-all joint/conditional/marginal data distributions (thus named big learning) with one universal foundation model. We reveal that big learning is what existing foundation models are implicitly doing; accordingly, our big learning provides high-level guidance for flexible design and improvements of foundation models, accelerating the true self-learning on the Internet. Besides, big learning ($i$) is equipped with marvelous flexibility for both training data and training-task customization; ($ii$) potentially delivers all joint/conditional/marginal data capabilities after training; ($iii$) significantly reduces the training-test gap with improved model generalization; and ($iv$) unifies conventional machine learning paradigms e.g. supervised learning, unsupervised learning, generative learning, etc. and enables their flexible cooperation, manifesting a universal learning paradigm.
翻译:基于大/基础模型的最近突破揭示了人工智能的模糊渠道,即投标数据、大/基础模型、大学习、大学习和美元。在这条途径之后,我们在此阐述新引入的大型学习。具体地说,大学习全面利用大规模完整/不完整数据所固有的现有信息,同时学习以一个通用基础模型模式模拟许多到所有联合/有条件/边际数据分布(因此称为大学习)。我们披露,大学习是现有基础模型暗含的工作;因此,我们的大学习为灵活设计和改进基础模型提供了高级指导,加快了互联网上真正的自学。此外,大学习(美元)为培训数据和培训任务定制提供了极大的灵活性;(二)在培训后有可能提供所有联合/有条件/边际数据能力(因此称为大学习)。(三)通过改进模型通用模型,大大缩小了培训测试差距;以及(四)统一了常规机器学习模式,例如:监督学习、不监督学习、基因改造学习等学习模式等,使这些模式得以展示。