Mechanical shock is a common occurrence in various settings, there are two different scenarios for shock protection: catastrophic protection (e.g. car collisions and falls) and routine protection (e.g. shoe soles and shock absorbers for car seats). The former protects against one-time events, the latter against periodic shocks and loads. Common shock absorbers based on plasticity and fracturing materials are suitable for the former, while our focus is on the latter, where elastic structures are useful. Improved elastic materials protecting against shock can be used in applications such as automotive suspension, furniture like sofas and mattresses, landing gear systems, etc. Materials offering optimal protection against shock have a highly non-linear elastic response: their reaction force needs to be as close as possible to constant with respect to deformation. In this paper, we use shape optimization and topology search to design 2D families of microstructures approximating the ideal behavior across a range of deformations, leading to superior shock protection. We present an algorithmic pipeline for the optimal design of such families combining differentiable nonlinear homogenization with self-contact and an optimization algorithm. These advanced 2D designs can be extruded and fabricated with existing 3D printing technologies. We validate their effectiveness through experimental testing.
翻译:暂无翻译