In submodular $k$-partition, the input is a non-negative submodular function $f$ defined over a finite ground set $V$ (given by an evaluation oracle) along with a positive integer $k$ and the goal is to find a partition of the ground set $V$ into $k$ non-empty parts $V_1, V_2, ..., V_k$ in order to minimize $\sum_{i=1}^k f(V_i)$. Narayanan, Roy, and Patkar (Journal of Algorithms, 1996) designed an algorithm for submodular $k$-partition based on the principal partition sequence and showed that the approximation factor of their algorithm is $2$ for the special case of graph cut functions (subsequently rediscovered by Ravi and Sinha (Journal of Operational Research, 2008)). In this work, we study the approximation factor of their algorithm for three subfamilies of submodular functions -- monotone, symmetric, and posimodular. We note that graph and hypergraph cut functions are symmetric submodular and moreover, both monotone submodular functions and symmetric submodular functions are posimodular submodular. We analyze the approximation factor of Narayanan, Roy, and Patkar's algorithm to show the following results: 1. The approximation factor of their algorithm for monotone submodular $k$-partition is $4/3$. This result improves on the $2$-factor achievable via other algorithms. Moreover, our upper bound of $4/3$ matches the recently shown lower bound under polynomial number of function evaluation queries (Santiago, IWOCA 2021). 2. The approximation factor of their algorithm for symmetric submodular $k$-partition is $2$. This result generalizes their approximation factor analysis beyond graph cut functions. 3. The approximation factor of their algorithm for posimodular submodular $k$-partition is $2$. We also construct an example to show that the approximation factor of their algorithm for arbitrary submodular functions is $\Omega(n/k)$.
翻译:在子模$k$-划分中,输入是一个定义在有限基集$V$上的非负子模函数$f$(由一个求值算子给出),以及一个正整数$k$,目标是找到基集$V$的一个划分成$k$个非空部分$V_1,V_2,...,V_k$,以使$\sum_{i=1}^k f(V_i)$最小化。 Narayanan、Roy和Patkar(Journal of Algorithms,1996)基于主要划分序列设计了一个子模$k$-划分算法,并显示它们的算法在图割函数的特殊情况下的逼近因子为$2$(随后被Ravi和Sinha(Journal of Operational Research, 2008)重新发现)。本文研究了他们的算法在三个子模函数子族(单调,对称和posimodular)中的逼近因子。我们注意到,图和超图割函数是对称子模函数,并且,单调子模函数和对称子模函数均为posimodular子模函数。我们分析了Narayanan、Roy和Patkar的算法的逼近因子,以展示以下结果:1.他们的算法针对单调子模$k$-划分的逼近因子为$4/3$。这个结果优于其他算法可实现的$2$倍逼近因子。此外,我们的上限$4/3$与最近在多项式数量的函数求值查询下显示的下限相匹配(Santiago,IWOCA 2021)。2.他们的算法针对对称子模$k$-划分的逼近因子为$2$。这个结果将他们的逼近因子分析推广到了图割函数以外。3.他们的算法针对posimodular子模$k$-划分的逼近因子为$2$。我们还构造了一个例子,以显示任意子模函数的逼近因子为$\Omega (n/k)$。