In submodular $k$-partition, the input is a non-negative submodular function $f$ defined over a finite ground set $V$ (given by an evaluation oracle) along with a positive integer $k$ and the goal is to find a partition of the ground set $V$ into $k$ non-empty parts $V_1, V_2, ..., V_k$ in order to minimize $\sum_{i=1}^k f(V_i)$. Narayanan, Roy, and Patkar (Journal of Algorithms, 1996) designed an algorithm for submodular $k$-partition based on the principal partition sequence and showed that the approximation factor of their algorithm is $2$ for the special case of graph cut functions (subsequently rediscovered by Ravi and Sinha (Journal of Operational Research, 2008)). In this work, we study the approximation factor of their algorithm for three subfamilies of submodular functions -- monotone, symmetric, and posimodular. We note that graph and hypergraph cut functions are symmetric submodular and moreover, both monotone submodular functions and symmetric submodular functions are posimodular submodular. We analyze the approximation factor of Narayanan, Roy, and Patkar's algorithm to show the following results: 1. The approximation factor of their algorithm for monotone submodular $k$-partition is $4/3$. This result improves on the $2$-factor achievable via other algorithms. Moreover, our upper bound of $4/3$ matches the recently shown lower bound under polynomial number of function evaluation queries (Santiago, IWOCA 2021). 2. The approximation factor of their algorithm for symmetric submodular $k$-partition is $2$. This result generalizes their approximation factor analysis beyond graph cut functions. 3. The approximation factor of their algorithm for posimodular submodular $k$-partition is $2$. We also construct an example to show that the approximation factor of their algorithm for arbitrary submodular functions is $\Omega(n/k)$.


翻译:在子模$k$-划分中,输入是一个定义在有限基集$V$上的非负子模函数$f$(由一个求值算子给出),以及一个正整数$k$,目标是找到基集$V$的一个划分成$k$个非空部分$V_1,V_2,...,V_k$,以使$\sum_{i=1}^k f(V_i)$最小化。 Narayanan、Roy和Patkar(Journal of Algorithms,1996)基于主要划分序列设计了一个子模$k$-划分算法,并显示它们的算法在图割函数的特殊情况下的逼近因子为$2$(随后被Ravi和Sinha(Journal of Operational Research, 2008)重新发现)。本文研究了他们的算法在三个子模函数子族(单调,对称和posimodular)中的逼近因子。我们注意到,图和超图割函数是对称子模函数,并且,单调子模函数和对称子模函数均为posimodular子模函数。我们分析了Narayanan、Roy和Patkar的算法的逼近因子,以展示以下结果:1.他们的算法针对单调子模$k$-划分的逼近因子为$4/3$。这个结果优于其他算法可实现的$2$倍逼近因子。此外,我们的上限$4/3$与最近在多项式数量的函数求值查询下显示的下限相匹配(Santiago,IWOCA 2021)。2.他们的算法针对对称子模$k$-划分的逼近因子为$2$。这个结果将他们的逼近因子分析推广到了图割函数以外。3.他们的算法针对posimodular子模$k$-划分的逼近因子为$2$。我们还构造了一个例子,以显示任意子模函数的逼近因子为$\Omega (n/k)$。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
126+阅读 · 2023年1月29日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
【硬核书】群论,Group Theory,135页pdf
专知会员服务
125+阅读 · 2020年6月25日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月15日
Arxiv
0+阅读 · 2023年6月13日
Arxiv
0+阅读 · 2023年6月13日
VIP会员
相关资讯
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员