In the computational sciences, one must often estimate model parameters from data subject to noise and uncertainty, leading to inaccurate results. In order to improve the accuracy of models with noisy parameters, we consider the problem of reducing error in an elliptic linear system with the operator corrupted by noise. We assume the noise preserves positive definiteness, but otherwise, we make no additional assumptions the structure of the noise. Under these assumptions, we propose the operator augmentation framework, a collection of easy-to-implement algorithms that augment a noisy inverse operator by subtracting an additional auxiliary term. In a similar fashion to the James-Stein estimator, this has the effect of drawing the noisy inverse operator closer to the ground truth, and hence reduces error. We develop bootstrap Monte Carlo algorithms to estimate the required augmentation magnitude for optimal error reduction in the noisy system. To improve the tractability of these algorithms, we propose several approximate polynomial expansions for the operator inverse, and prove desirable convergence and monotonicity properties for these expansions. We also prove theorems that quantify the error reduction obtained by operator augmentation. In addition to theoretical results, we provide a set of numerical experiments on four different graph and grid Laplacian systems that all demonstrate effectiveness of our method.
翻译:在计算科学中,人们必须经常从受到噪音和不确定因素影响的数据中估计模型参数,从而得出不准确的结果。为了提高具有噪音参数的模型的准确性,我们考虑减少由噪音腐蚀的操作者在椭圆线性系统中的错误的问题。我们假定噪音保留了积极的确定性,但是,我们没有额外假设噪音的结构。根据这些假设,我们提议操作者增强框架,这是一套易于执行的简单算法,通过再减去一个辅助术语来增加一个吵闹的反运算法,从而增加一个吵闹的操作者。以类似詹姆斯-斯泰因天文天文测算器的方式,这样做的效果是将噪音反向操作者拉近地面的真理,从而减少错误。我们开发蒙特卡洛测算器,以估计所需的增量幅度,以最佳减少噪音系统中的错误。为了提高这些算法的可调控性,我们提议为操作者提出若干近似多位扩展法,并证明这些扩展是可取的组合和单调性特性。我们还以类似的方式,把噪音操作者缩小的误差,从而量化了操作者扩大的地基数。我们提出了一套数字方法。