Accurate forecasts of photovoltaic power generation (PVPG) are essential to optimize operations between energy supply and demand. Recently, the propagation of sensors and smart meters has produced an enormous volume of data, which supports the development of data based PVPG forecasting. Although emerging deep learning (DL) models, such as the long short-term memory (LSTM) model, based on historical data, have provided effective solutions for PVPG forecasting with great successes, these models utilize offline learning. As a result, DL models cannot take advantage of the opportunity to learn from newly-arrived data, and are unable to handle concept drift caused by installing extra PV units and unforeseen PV unit failures. Consequently, to improve day-ahead PVPG forecasting accuracy, as well as eliminate the impacts of concept drift, this paper proposes an adaptive LSTM (AD-LSTM) model, which is a DL framework that can not only acquire general knowledge from historical data, but also dynamically learn specific knowledge from newly-arrived data. A two-phase adaptive learning strategy (TP-ALS) is integrated into AD-LSTM, and a sliding window (SDWIN) algorithm is proposed, to detect concept drift in PV systems. Multiple datasets from PV systems are utilized to assess the feasibility and effectiveness of the proposed approaches. The developed AD-LSTM model demonstrates greater forecasting capability than the offline LSTM model, particularly in the presence of concept drift. Additionally, the proposed AD-LSTM model also achieves superior performance in terms of day-ahead PVPG forecasting compared to other traditional machine learning models and statistical models in the literature.


翻译:光电发电的准确预测对于优化能源供应和需求之间的运作至关重要。最近,传感器和智能仪的传播产生了大量数据,支持了基于数据PVPG的预测。尽管正在形成的深层次学习模式,如基于历史数据的长短期内存(LSTM)模型,为光电发电的预测提供了有效的解决办法,但这些模型利用了离线学习。结果,DL模型无法利用从新到来的数据中学习的机会,也无法处理由于安装额外的光电装置和意外到来的光电机单位故障而造成的概念漂移。因此,为了提高光电离气预测的准确性,并消除概念漂移的影响,本文件提出了适应性LSTM(LTM)模型,这是一个不仅能够从历史数据中获取一般知识的DLLLL框架,而且还动态地从新到新到数据流数据,两阶段的适应性适应性适应性学习战略(TP-ALS)已经融入了AD-LTM的模型模型模型,在S-S-S-S-S-S-S-S-SL-SL-S-S-Sleving Syal-S-S-AD-ADL-S-AD-AD-S-ADL-S-S-S-ADL-S-ADL-ADL-S-S-AD-S-S-S-S-S-S-S-S-SlVILVIL-S-S-S-S-S-S-S-S-S-S-S-SLVI-SD-S-S-S-S-S-S-AD-S-S-S-S-SL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SL-SL-L-SL-SL-SL-SL-SL-SL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年11月19日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Deep Learning for Energy Markets
Arxiv
9+阅读 · 2019年4月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员