The page presentation biases in the information retrieval system, especially on the click behavior, is a well-known challenge that hinders improving ranking models' performance with implicit user feedback. Unbiased Learning to Rank~(ULTR) algorithms are then proposed to learn an unbiased ranking model with biased click data. However, most existing algorithms are specifically designed to mitigate position-related bias, e.g., trust bias, without considering biases induced by other features in search result page presentation(SERP). For example, the multimedia type may generate attractive bias. Unfortunately, those biases widely exist in industrial systems and may lead to an unsatisfactory search experience. Therefore, we introduce a new problem, i.e., whole-page Unbiased Learning to Rank(WP-ULTR), aiming to handle biases induced by whole-page SERP features simultaneously. It presents tremendous challenges. For example, a suitable user behavior model (user behavior hypothesis) can be hard to find; and complex biases cannot be handled by existing algorithms. To address the above challenges, we propose a Bias Agnostic whole-page unbiased Learning to rank algorithm, BAL, to automatically discover and mitigate the biases from multiple SERP features with no specific design. Experimental results on a real-world dataset verify the effectiveness of the BAL.
翻译:信息检索系统中的页面显示偏差,特别是点击行为上的偏差,是一个众所周知的挑战,妨碍以隐含用户反馈的方式改进排名模型的性能。然后建议不偏颇地学习 Rank~(Luker) 算法,以学习带有偏差的点击数据为目的的不偏颇的排名模式。然而,大多数现有的算法是专门设计来减轻与位置有关的偏差的,例如信任偏差,而没有考虑到搜索结果页面演示中其他特征引起的偏差。例如,多媒体类型可能会产生有吸引力的偏差。不幸的是,这些偏差在工业系统中广泛存在,并可能导致不令人满意的搜索经历。因此,我们引入了一个新问题,即全页的不偏差学习到 Rank(WP-LukR),目的是同时处理全页SERP特征引起的偏差。它提出了巨大的挑战。例如,合适的用户行为模型(用户行为假设)可能很难找到;复杂的偏差无法由现有的算法处理。为了应对上述挑战,我们提议用Bas Agnestic 整页不偏倚无偏倚的学习来自动发现和减少对等算算算法,BAL,以便自动地从SERAL 具体数据设计上自动识别。