Complex manipulation tasks require careful integration of symbolic reasoning and motion planning. This problem, commonly referred to as Task and Motion Planning (TAMP), is even more challenging if the workspace is non-static, e.g. due to human interventions and perceived with noisy non-ideal sensors. This work proposes an online approximated TAMP method that combines a geometric reasoning module and a motion planner with a standard task planner in a receding horizon fashion. Our approach iteratively solves a reduced planning problem over a receding window of a limited number of future actions during the implementation of the actions. Thus, only the first action of the horizon is actually scheduled at each iteration, then the window is moved forward, and the problem is solved again. This procedure allows to naturally take into account potential changes in the scene while ensuring good runtime performance. We validate our approach within extensive experiments in a simulated environment. We showed that our approach is able to deal with unexpected changes in the environment while ensuring comparable performance with respect to other recent TAMP approaches in solving traditional static benchmarks. We release with this paper the open-source implementation of our method.


翻译:复杂的操纵任务要求仔细整合象征性推理和动作规划。 这个问题通常被称为任务和动作规划(TAMP),如果工作空间不固定,则更具有挑战性,例如,由于人类的干预和与吵闹的非理想感应器的感知,这项工作提出了在线近似TAMP的方法,该方法将几何推理模块和运动规划器与标准任务规划器结合起来,以放弃的视野方式进行。我们的方法迭代地解决了减少规划问题,因为在执行行动期间,未来行动数量有限,但会减少。因此,只有地平线的第一个行动实际排在每次迭代,然后窗口向前移动,问题再次解决。这个程序可以自然考虑到场面上的潜在变化,同时确保良好的运行时间性。我们在模拟环境中的广泛实验中验证了我们的方法。我们表明,我们的方法能够处理环境的意外变化,同时确保在解决传统静态基准方面其他最近的TAMP方法的类似性能。我们通过该文件释放我们的方法的公开源执行。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2020年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
4+阅读 · 2020年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员