This paper takes the first step towards a reactive, hierarchical multi-robot task allocation and planning framework given a global Linear Temporal Logic specification. In our scenario, legged and wheeled robots collaborate in a heterogeneous team to accomplish a variety of navigation and delivery tasks. However, all robots are susceptible to different types of disturbances including locomotion failures, human interventions, and obstructions from the environment. To address these disturbances, we propose task-level local and global reallocation strategies to efficiently generate updated action-state sequences online while guaranteeing the completion of the original task. In addition, these task reallocation approaches eliminate reconstructing the entire plan or resynthesizing a new task. Lastly, a Behavior Tree execution layer monitors different types of disturbances and employs the reallocation methods to make corresponding recovery strategies. To evaluate this planning framework, dynamic simulations are conducted in a realistic hospital environment with a heterogeneous robot team consisting of quadrupeds and wheeled robots for delivery tasks.
翻译:本文迈出了第一步,根据全球线性时空逻辑的规格,实现反应性、等级性多机器人任务分配和规划框架。在我们的情景中,腿部和轮式机器人在不同的团队中合作完成各种导航和交付任务。然而,所有机器人都容易发生不同类型的干扰,包括行动失灵、人类干预和环境障碍。为了应对这些干扰,我们提出了任务层面的地方和全球重新分配战略,以便在网上高效生成更新的行动状态序列,同时保证完成最初的任务。此外,这些任务重新分配方法消除了整个计划的重建或重新组合一项新任务。最后,行为树执行层监测不同类型的扰动,并使用重新分配方法制定相应的恢复战略。为了评估这一规划框架,在现实的医院环境中进行动态模拟,由四轮式机器人和轮式机器人组成的混合机器人小组负责交付任务。