Graph Neural Networks (GNN) have shown remarkable performance in different tasks. However, there are a few studies about GNN on recommender systems. GCN as a type of GNNs can extract high-quality embeddings for different entities in a graph. In a collaborative filtering task, the core problem is to find out how informative an entity would be for predicting the future behavior of a target user. Using an attention mechanism, we can enable GCNs to do such an analysis when the underlying data is modeled as a graph. In this study, we proposed GARec as a model-based recommender system that applies an attention mechanism along with a spatial GCN on a recommender graph to extract embeddings for users and items. The attention mechanism tells GCN how much a related user or item should affect the final representation of the target entity. We compared the performance of GARec against some baseline algorithms in terms of RMSE. The presented method outperforms existing model-based, non-graph neural networks and graph neural networks in different MovieLens datasets.
翻译:神经网络图(GNN)在不同任务中表现出了显著的成绩。 但是,在推荐系统方面,有一些关于GNN的研究表明GNN。 GNN作为一种GNN可以在图表中为不同实体提取高质量的嵌入器。在合作过滤任务中,核心问题是找出一个实体在预测目标用户的未来行为方面的信息性能。我们使用关注机制,可以让GCN在基本数据建模为图表时进行这样的分析。在这项研究中,我们建议GARec作为一种基于模型的推荐系统,将关注机制与空间GCN一起应用在推荐图中为用户和项目提取嵌入器上。关注机制告诉GCN一个相关用户或项目应该在多大程度上影响目标实体的最终表现。我们比较了GARec在RME中的某些基线算法的性能。我们介绍的方法超越了不同电影实验室数据集中现有的基于模型的非线网络和图形神经网络。