Parsimonious and effective models for the extremes of precipitation aggregates that can capture their joint behaviour at different spatial resolutions must be built with knowledge of the underlying spatial process. Precipitation is driven by a mixture of processes acting at different scales and intensities. The specific process that drives the extremal behaviour of the aggregate will be dependent on the aggregate resolution; whilst high-intensity, spatially-localised convective events cause extreme high-resolution spatial aggregates, the contribution of low-intensity, large-scale fronts is likely to increase with the scale of the aggregate. Thus, to jointly model low- and high-resolution spatial aggregates, we require a model that can capture both convective and frontal events. We propose a novel spatial extreme values model which is a mixture of two components with different marginal and dependence models that are able to capture the extremal behaviour of convective and frontal rainfall. Modelling extremes of the frontal component raises new challenges due to it exhibiting strong long-range extremal spatial dependence. Our modelling approach is applied to fine-scale, high-dimensional, gridded precipitation data, where we show that accounting for the mixture structure improves the joint inference on extremes of spatial aggregates over multiple regions of different sizes.


翻译:能够在不同空间分辨率上捕捉其共同行为的降水总量极端的分层有效模型必须结合对基础空间过程的了解来构建。降水是由在不同尺度和强度上的各种过程混合在一起驱动的。驱动总量极端行为的具体过程将取决于总分辨率;高强度、空间定位的凝聚事件导致极端高分辨率空间集合,低强度、大型战线的贡献可能会随着总体规模的扩大而增加。因此,为了联合模拟低分辨率和高分辨率空间综合体,我们需要一种能够同时捕捉对等和前方事件的模型。我们提出了一个新的空间极端值模型,该模型由两个组成部分和不同的边际和依赖型模型组成,能够捕捉对流和前方降雨的极端行为。前方部分的模型提出了新的挑战,因为其展现出强烈的远程高度空间依赖性。我们模拟方法被用于对多层降水量的精确度、高分辨率和电网格化综合体结构进行模拟。我们提出了一种新的空间极端值模型模型,其中两个组成部分与不同的边际和依赖性模型混合体积模型进行混合计算,其中我们展示了多层降水层的模型结构。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
卷积神经网络中的注意力机制综述
专知会员服务
75+阅读 · 2021年10月22日
注意力机制综述
专知会员服务
82+阅读 · 2021年1月26日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
24+阅读 · 2020年9月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
卷积神经网络中的注意力机制综述
专知会员服务
75+阅读 · 2021年10月22日
注意力机制综述
专知会员服务
82+阅读 · 2021年1月26日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
24+阅读 · 2020年9月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员