One-step abductive multi-target learning (OSAMTL) is an approach proposed to handle complex noisy labels. However, OSAMTL is not suitable for the situation where diverse noisy samples (DNS) are provided for a learning task. In this paper, giving definition of DNS, we propose one-step abductive multi-target learning with DNS (OSAMTL-DNS) to expand the original OSAMTL to a wider range of tasks that handle complex noisy labels. Applying OSAMTL-DNS to tumour segmentation for breast cancer in medical histopathology whole slide image analysis, we show that OSAMTL-DNS is able to enable various state-of-the-art approaches for learning from noisy labels to achieve significantly more rational predictions.
翻译:为处理复杂的吵闹标签,建议采用一步一步的绑架多目标学习(OSAMTL)方法。然而,OSAMTL并不适合为学习任务提供各种吵闹抽样(DNS)的情况。在本文中,在定义DNS时,我们建议与DNS(OSAMTL-DNS)一起采取一步的绑架多目标学习,将原OSAMTL(OSAMTL-DNS)扩大到处理复杂吵闹标签的更广泛的任务。在医学组织病理学全幻灯片图象分析中将OSAMTL-DNS应用于乳腺癌肿瘤分割,我们表明OSAMTL-DNS能够使从噪音标签中学习的各种最先进的方法能够实现更合理的预测。