Time-to-event analysis (survival analysis) is used when the outcome or the response of interest is the time until a pre-specified event occurs. Time-to-event data are sometimes discrete either because time itself is discrete or due to grouping of failure times into intervals or rounding off measurements. In addition, the failure of an individual could be one of several distinct failure types; known as competing risks (events) data. This work focuses on discrete-time regression with competing events. We emphasize the main difference between the continuous and discrete settings with competing events, develop a new estimation procedure, and present PyDTS, an open source Python package which implements our estimation procedure and other tools for discrete-time-survival analysis with competing risks.
翻译:时间对活动的分析(生存分析)是当有关结果或反应是发生特定事件之前的时间时使用的。时间对活动的数据有时是分开的,因为时间本身是分开的,或者由于将失败时间按间隔分组或四舍五入的测量结果。此外,个人的失败可能是几种不同的失败类型之一;称为相互竞争的风险(活动)数据。这项工作的重点是与相互竞争的事件分开的时间回归。我们强调连续和离散的环境与相互竞争的事件之间的主要区别,制定新的估算程序,以及目前的PyDTS,这是一个开放源源的Python软件包,用于执行我们的估算程序和其他工具,用于对相互竞争的风险进行离散的时间对生存进行分析。