This paper presents a spectral scheme for the numerical solution of nonlinear conservation laws in non-periodic domains under arbitrary boundary conditions. The approach relies on the use of the Fourier Continuation (FC) method for spectral representation of non-periodic functions in conjunction with smooth localized artificial viscosity assignments produced by means of a Shock-Detecting Neural Network (SDNN). Like previous shock capturing schemes and artificial viscosity techniques, the combined FC-SDNN strategy effectively controls spurious oscillations in the proximity of discontinuities. Thanks to its use of a localized but smooth artificial viscosity term, whose support is restricted to a vicinity of flow-discontinuity points, the algorithm enjoys spectral accuracy and low dissipation away from flow discontinuities, and, in such regions, it produces smooth numerical solutions -- as evidenced by an essential absence of spurious oscillations in level set lines. The FC-SDNN viscosity assignment, which does not require use of problem-dependent algorithmic parameters, induces a significantly lower overall dissipation than other methods, including the Fourier-spectral versions of the previous entropy viscosity method. The character of the proposed algorithm is illustrated with a variety of numerical results for the linear advection, Burgers and Euler equations in one and two-dimensional non-periodic spatial domains.
翻译:本文介绍了在任意的边界条件下非定期领域非线性养护法数字解决方案的光谱方案。 这种方法依赖于使用Fourier Csession (FC) 方法来代表非定期性功能的光谱,同时通过震荡检测神经网络(SDNN)进行平滑的局部人工粘度任务。 与以往的休克捕捉计划和人工粘度技术一样,FC-SDNN联合战略有效地控制了不连续状态附近的虚假振荡。 由于使用了局部但平滑的人工粘度术语,该术语的支持仅限于流动不连续点附近,算法具有光谱准确性和低度,远离流动不连续性,在这类区域,它产生光滑的数值解决方案 -- -- 与以前定线中基本缺乏刺激的振荡振荡波和人工粘度技术一样。 FC-SDNN 联合战略不需要使用基于问题的周期算参数,因此比其他方法的总体分散性要小得多,因为后者的支持仅限于流动不连续点点点点点点点点,算法的光谱准确性和低度方法,在此类区域中产生平流流流流流流的平的平流性平流性平方程式,在前的平方程式中,而以图的平流的平流的平面性平流的平流的平流法的平流法的平流的平流法是前两个平流性平的平流性平的平的平的平的平的平的平的平的平流法。