We analyse an energy minimisation problem recently proposed for modelling smectic-A liquid crystals. The optimality conditions give a coupled nonlinear system of partial differential equations, with a second-order equation for the tensor-valued nematic order parameter $\mathbf{Q}$ and a fourth-order equation for the scalar-valued smectic density variation $u$. Our two main results are a proof of the existence of solutions to the minimisation problem, and the derivation of a priori error estimates for its discretisation of the decoupled case (i.e., $q=0$) using the $\mathcal{C}^0$ interior penalty method. More specifically, optimal rates in the $H^1$ and $L^2$ norms are obtained for $\mathbf{Q}$, while optimal rates in a mesh-dependent norm and $L^2$ norm are obtained for $u$. Numerical experiments confirm the rates of convergence.
翻译:我们分析了最近为模拟光学-A液晶体而提议的一个能源最小化问题。 最佳性条件给出了一个非线性局部差分方程式的结合非线性系统, 以及高价微值线性定单参数的二阶方程式 $\ mathbf ⁇ $, 和cal- 估量性密度变异的四阶方程式 $u美元。 我们的两个主要结果证明存在解决最小化问题的办法, 以及利用$\ mathcal{C ⁇ 0$的内置罚款方法得出一个分解案件( $=0美元)的先验误差估计数。 更具体地说, $H+1美元和 $L%2美元的标准是最佳的, 而以网状为主的规范和以$L%2美元为主的准标准, 以美元为主, 和以美元为主, $L%2美元的标准是最佳的。 数字实验证实了趋同率。