Families of mixtures of multivariate power exponential (MPE) distributions have been previously introduced and shown to be competitive for cluster analysis in comparison to other elliptical mixtures including mixtures of Gaussian distributions. Herein, we propose a family of mixtures of multivariate skewed power exponential distributions to combine the flexibility of the MPE distribution with the ability to model skewness. These mixtures are more robust to variations from normality and can account for skewness, varying tail weight, and peakedness of data. A generalized expectation-maximization approach combining minorization-maximization and optimization based on accelerated line search algorithms on the Stiefel manifold is used for parameter estimation. These mixtures are implemented both in the model-based clustering and classification frameworks. Both simulated and benchmark data are used for illustration and comparison to other mixture families.
翻译:多变功率指数分布的混合物组合,以前曾采用过,并显示与其他椭圆混合物(包括高山分布的混合物)相比,集束分析具有竞争力。在此,我们提议了多变偏差指数分布的混合物组合,以结合多变偏差指数分布的灵活性和模拟斜度的能力。这些混合物较坚固,与正常性不同,可以说明扭曲性、尾部重量不同和数据峰值。在参数估计时,采用了基于Stiefel 元件加速线搜索算法的微小-最大化和优化的通用预期-最大化方法。这些混合物既在基于模型的集群和分类框架中实施,也用于模拟和基准数据,用于与其他混合组群进行示例和比较。