In response to the increasing number of devices expected in next-generation networks, a shift to over-the-air (OTA) computing has been proposed. By leveraging the superposition of multiple access channels, OTA computing enables efficient resource management by supporting simultaneous uncoded transmission in the time and frequency domains. To advance the integration of OTA computing, our study presents a theoretical analysis that addresses practical issues encountered in current digital communication transceivers, such as transmitter synchronization (sync) errors and intersymbol interference (ISI). To this end, we investigate the theoretical mean squared error (MSE) for OTA transmission under sync errors and ISI, while also exploring methods for minimizing the MSE in OTA transmission. Using alternating optimization, we also derive optimal power policies for both the devices and the base station. In addition, we propose a novel deep neural network (DNN)-based approach to design waveforms that improve OTA transmission performance under sync errors and ISI. To ensure a fair comparison with existing waveforms such as raised cosine (RC) and better-than-raised-cosine (BTRC), we incorporate a custom loss function that integrates energy and bandwidth constraints along with practical design considerations such as waveform symmetry. Simulation results validate our theoretical analysis and demonstrate performance gains of the designed pulse over RC and BTRC waveforms. To facilitate testing of our results without the need to rebuild the DNN structure, we also provide curve-fitting parameters for the selected DNN-based waveforms.


翻译:为应对下一代网络中预期设备数量的增长,空中计算(OTA)模式被提出。通过利用多址信道的叠加特性,OTA计算支持时域与频域上的非编码同步传输,从而实现高效的资源管理。为推进OTA计算的集成应用,本研究通过理论分析解决了当前数字通信收发器中存在的实际问题,如发射机同步误差与码间干扰。为此,我们推导了同步误差与码间干扰下OTA传输的理论均方误差,并探索了最小化OTA传输均方误差的方法。通过交替优化算法,我们同时推导出设备与基站的最优功率分配策略。此外,我们提出了一种基于深度神经网络的新型波形设计方法,以提升同步误差与码间干扰下的OTA传输性能。为与升余弦波形、超升余弦波形等现有波形进行公平比较,我们设计了包含能量约束、带宽约束及波形对称性等实际考量的自定义损失函数。仿真结果验证了理论分析的正确性,并表明所设计脉冲波形在性能上优于升余弦与超升余弦波形。为便于无需重建神经网络结构即可验证结果,我们还提供了所选深度神经网络波形的曲线拟合参数。

0
下载
关闭预览

相关内容

设计是对现有状的一种重新认识和打破重组的过程,设计让一切变得更美。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员