A promising technique for the spectral design of acoustic metamaterials is based on the formulation of suitable constrained nonlinear optimization problems. Unfortunately, the straightforward application of classical gradient-based iterative optimization algorithms to the numerical solution of such problems is typically highly demanding, due to the complexity of the underlying physical models. Nevertheless, supervised machine learning techniques can reduce such a computational effort, e.g., by replacing the original objective functions of such optimization problems with more-easily computable approximations. In this framework, the present article describes the application of a related unsupervised machine learning technique, namely, principal component analysis, to approximate the gradient of the objective function of a band gap optimization problem for an acoustic metamaterial, with the aim of making the successive application of a gradient-based iterative optimization algorithm faster. Numerical results show the effectiveness of the proposed method.
翻译:对声学元材料的光谱设计而言,有希望的技术是以制定适当的限制非线性优化问题为基础的。不幸的是,由于基础物理模型的复杂性,将古典梯度迭代优化算法直接应用于这类问题的数字解决方案通常要求很高。然而,监督的机器学习技术可以减少这种计算努力,例如,用比较容易比较的近似值取代这种优化问题的最初客观功能。在本框架中,本篇文章描述了一种相关的未经监督的机器学习技术的应用,即主要组成部分分析,以近似音学元材料的波段间隙优化问题客观功能的梯度,目的是使基于梯度的迭代优化算法的连续应用更快。数字结果显示了拟议方法的有效性。