This paper investigates the energy efficiency (EE) optimization in downlink multi-cell massive multiple-input multiple-output (MIMO). In our research, the statistical channel state information (CSI) is exploited to reduce the signaling overhead. To maximize the minimum EE among the neighbouring cells, we design the transmit covariance matrices for each base station (BS). Specifically, optimization schemes for this max-min EE problem are developed, in the centralized and distributed ways, respectively. To obtain the transmit covariance matrices, we first find out the closed-form optimal transmit eigenmatrices for the BS in each cell, and convert the original transmit covariance matrices designing problem into a power allocation one. Then, to lower the computational complexity, we utilize an asymptotic approximation expression for the problem objective. Moreover, for the power allocation design, we adopt the minorization maximization method to address the non-convexity of the ergodic rate, and use Dinkelbach's transform to convert the max-min fractional problem into a series of convex optimization subproblems. To tackle the transformed subproblems, we propose a centralized iterative water-filling scheme. For reducing the backhaul burden, we further develop a distributed algorithm for the power allocation problem, which requires limited inter-cell information sharing. Finally, the performance of the proposed algorithms are demonstrated by extensive numerical results.
翻译:本文调查了下链接多细胞大规模多投入多重产出的能源效率优化(EE) 。 在我们的研究中, 统计频道国家信息( CSI) 被利用来减少信号性电流。 为了在相邻的单元格中最大限度地实现最小 EE, 我们为每个基站设计了传输共变矩阵。 具体地说, 以集中和分布的方式分别针对这个最大 EEE 问题开发了最小化优化计划。 为了获得传输常态矩阵, 我们首先发现每个单元格的 BS 的封闭式最佳传输源数, 并将最初的传输变异矩阵设计问题转换成一个电源配置。 然后, 为了降低计算复杂性, 我们为每个基站设计了一个最小化的近似缩略矩阵。 此外, 我们采用了最小化最大化最大化优化方法, 并使用 Dinkelbach 转换将最大分数问题转换成一系列的 Bexx 优化亚相容性能配置矩阵, 并且我们提出一个可配置性配置的配置性数据配置方案。 最后, 我们提出一个可转换的亚序式配置系统, 解决一个可配置性数据配置的配置系统 。