In their seminal work, Polyak and Juditsky showed that stochastic approximation algorithms for solving smooth equations enjoy a central limit theorem. Moreover, it has since been argued that the asymptotic covariance of the method is best possible among any estimation procedure in a local minimax sense of H\'{a}jek and Le Cam. A long-standing open question in this line of work is whether similar guarantees hold for important non-smooth problems, such as stochastic nonlinear programming or stochastic variational inequalities. In this work, we show that this is indeed the case.
翻译:Polyak 和 Juditsky 在其开创性著作中表明,解决平滑方程式的随机近似算法具有中心限度的理论,此外,自那以后有人争辩说,在H\'{a}jek和Le Cam的当地微型感觉中,该方法的无症状共性在任何估计程序中都是最好的。 这项工作中长期存在的一个未决问题是,对于重要的非悬浮问题,例如诸如随机非线性非线性编程或随机性变异性不平等,是否有类似的保障。 在这项工作中,我们证明情况确实如此。