Humor is a natural and fundamental component of human interactions. When correctly applied, humor allows us to express thoughts and feelings conveniently and effectively, increasing interpersonal affection, likeability, and trust. However, understanding the use of humor is a computationally challenging task from the perspective of humor-aware language processing models. As language models become ubiquitous through virtual-assistants and IOT devices, the need to develop humor-aware models rises exponentially. To further improve the state-of-the-art capacity to perform this particular sentiment-analysis task we must explore models that incorporate contextualized and nonverbal elements in their design. Ideally, we seek architectures accepting non-verbal elements as additional embedded inputs to the model, alongside the original sentence-embedded input. This survey thus analyses the current state of research in techniques for improved contextualized embedding incorporating nonverbal information, as well as newly proposed deep architectures to improve context retention on top of popular word-embeddings methods.


翻译:幽默是人类互动的自然和基本组成部分。 当正确应用时, 幽默让我们能够方便和有效地表达思想和情感, 增加人际感情、 相似性和信任。 但是, 从幽默感处理模型的角度看, 理解幽默感的使用是计算上具有挑战性的任务。 随着语言模型通过虚拟辅助者和IOT设备变得无处不在, 开发幽默感模型的必要性成倍上升。 为了进一步提高最先进的执行这一特殊情感分析任务的能力, 我们必须探索将背景化和非语言元素纳入设计中的模型。 理想的情况是, 我们寻求建筑接受非语言元素作为模型的额外嵌入投入, 以及最初的句子组装投入。 因此, 本次调查分析了改进包含非语言信息的环境化嵌入技术方面的研究现状, 以及新提议的深层结构, 以改善在流行的文字组合方法之上的背景保留。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
A Survey on Evolutionary Neural Architecture Search
Arxiv
0+阅读 · 2021年1月5日
Arxiv
6+阅读 · 2019年7月11日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员