Humor is a natural and fundamental component of human interactions. When correctly applied, humor allows us to express thoughts and feelings conveniently and effectively, increasing interpersonal affection, likeability, and trust. However, understanding the use of humor is a computationally challenging task from the perspective of humor-aware language processing models. As language models become ubiquitous through virtual-assistants and IOT devices, the need to develop humor-aware models rises exponentially. To further improve the state-of-the-art capacity to perform this particular sentiment-analysis task we must explore models that incorporate contextualized and nonverbal elements in their design. Ideally, we seek architectures accepting non-verbal elements as additional embedded inputs to the model, alongside the original sentence-embedded input. This survey thus analyses the current state of research in techniques for improved contextualized embedding incorporating nonverbal information, as well as newly proposed deep architectures to improve context retention on top of popular word-embeddings methods.
翻译:幽默是人类互动的自然和基本组成部分。 当正确应用时, 幽默让我们能够方便和有效地表达思想和情感, 增加人际感情、 相似性和信任。 但是, 从幽默感处理模型的角度看, 理解幽默感的使用是计算上具有挑战性的任务。 随着语言模型通过虚拟辅助者和IOT设备变得无处不在, 开发幽默感模型的必要性成倍上升。 为了进一步提高最先进的执行这一特殊情感分析任务的能力, 我们必须探索将背景化和非语言元素纳入设计中的模型。 理想的情况是, 我们寻求建筑接受非语言元素作为模型的额外嵌入投入, 以及最初的句子组装投入。 因此, 本次调查分析了改进包含非语言信息的环境化嵌入技术方面的研究现状, 以及新提议的深层结构, 以改善在流行的文字组合方法之上的背景保留。