Training deep neural networks(DNN) with noisy labels is challenging since DNN can easily memorize inaccurate labels, leading to poor generalization ability. Recently, the meta-learning based label correction strategy is widely adopted to tackle this problem via identifying and correcting potential noisy labels with the help of a small set of clean validation data. Although training with purified labels can effectively improve performance, solving the meta-learning problem inevitably involves a nested loop of bi-level optimization between model weights and hyper-parameters (i.e., label distribution). As compromise, previous methods resort to a coupled learning process with alternating update. In this paper, we empirically find such simultaneous optimization over both model weights and label distribution can not achieve an optimal routine, consequently limiting the representation ability of backbone and accuracy of corrected labels. From this observation, a novel multi-stage label purifier named DMLP is proposed. DMLP decouples the label correction process into label-free representation learning and a simple meta label purifier. In this way, DMLP can focus on extracting discriminative feature and label correction in two distinctive stages. DMLP is a plug-and-play label purifier, the purified labels can be directly reused in naive end-to-end network retraining or other robust learning methods, where state-of-the-art results are obtained on several synthetic and real-world noisy datasets, especially under high noise levels.
翻译:由于DNN可以很容易地将不准确的标签混为一文,导致普遍化能力差。最近,以元学习为基础的标签校正战略被广泛采用,通过在一组清洁验证数据的帮助下识别和纠正潜在的噪音标签来解决这一问题。虽然用净化标签进行的培训可以有效提高性能,但解决元学习问题必然需要在模型重量和超参数(即标签分布)之间双层优化的嵌套循环,因为DNN可以很容易地将不准确的标签混在一起,从而导致不准确的标签。作为妥协,以前采用的方法是同时学习过程,同时进行交替更新。在本文件中,我们从经验上发现,对模型重量和标签分配的这种同时优化无法达到最佳的常规,从而限制潜在噪音标签的代表性能力和校正标签的准确性。从这一观察中,提出了名为DMLP的新多阶段的标签净化器。DMLP将标签校正进程分为无标签的学习和简单的元标签净化。在这方面,DMLP可以侧重于在两个独特的阶段中提取具有歧视性的特点和标签的升级的升级,特别是在高级标签中。