A parallel and nested version of a frequency filtering preconditioner is proposed for linear systems corresponding to diffusion equation on a structured grid. The proposed preconditioner is found to be robust with respect to jumps in the diffusion coefficients. The storage requirement for the preconditioner is O(N),where N is number of rows of matrix, hence, a fairly large problem of size more than 42 million unknowns has been solved on a quad core machine with 64GB RAM. The parallelism is achieved using twisted factorization and SIMD operations. The preconditioner achieves a speedup of 3.3 times on a quad core processor clocked at 4.2 GHz, and compared to a well known algebraic multigrid method, it is significantly faster in both setup and solve times for diffusion equations with jumps.
翻译:对于与结构化网格上扩散方程式相对应的线性系统,提议了一个平行的和嵌套的频率过滤先决条件版本。 拟议的先决条件被认为对于扩散系数的跳跃具有很强的作用。 先决条件的存储要求是O(N), N是矩阵的行数, 因此,在使用64GB 内存的四重核心机器上解决了4,200万个未知的相当大问题。 平行性是通过扭曲的系数化和SIMD操作实现的。 先决条件在以4.2千兆赫计时的四重核心处理器上实现了3.3倍的加速, 与众所周知的代数多格方法相比, 在设置和解决以跳动的扩散方程式的时间上都大大加快了。