Exploring and modeling heterogeneous elastic surfaces requires multiple interactions with the environment and a complex selection of physical material parameters. The most common approaches model deformable properties from sets of offline observations using computationally expensive force-based simulators. In this work we present an online probabilistic framework for autonomous estimation of a deformability distribution map of heterogeneous elastic surfaces from few physical interactions. The method takes advantage of Gaussian Processes for constructing a model of the environment geometry surrounding a robot. A fast Position-based Dynamics simulator uses focused environmental observations in order to model the elastic behavior of portions of the environment. Gaussian Process Regression maps the local deformability on the whole environment in order to generate a deformability distribution map. We show experimental results using a PrimeSense camera, a Kinova Jaco2 robotic arm and an Optoforce sensor on different deformable surfaces.
翻译:在这项工作中,我们提出了一个在线概率框架,用于自动估算来自少数物理互动的多元弹性表面变形分布图。该方法利用高山进程来构建机器人周围环境几何模型。快速定位动态模拟器使用重点环境观测,以模拟环境部分的弹性行为。高山进程回归图绘制了整个环境中的局部变形性图,以生成一个变形分布图。我们用一台PenSense相机、一台Kinova Jaco2机器人臂和一个不同变形表面的Optoforce传感器展示了实验结果。