In the medical domain, a Systematic Literature Review (SLR) attempts to collect all empirical evidence, that fit pre-specified eligibility criteria, in order to answer a specific research question. The process of preparing an SLR consists of multiple tasks that are labor-intensive and time-consuming, involving large monetary costs. Technology-assisted review (TAR) methods automate the different processes of creating an SLR and they are particularly focused on reducing the burden of screening for reviewers. We present a novel method for TAR that implements a full pipeline from the research protocol to the screening of the relevant papers. Our pipeline overcomes the need of a Boolean query constructed by specialists and consists of three different components: the primary retrieval engine, the inter-review ranker and the intra-review ranker, combining learning-to-rank techniques with a relevance feedback method. In addition, we contribute an updated version of the Task 2 of the CLEF 2019 eHealth Lab dataset, which we make publicly available. Empirical results on this dataset show that our approach can achieve state-of-the-art results.


翻译:在医学领域,系统文学审查试图收集所有符合预先规定的资格标准的经验证据,以便回答具体的研究问题;编制一个系统文学审查的过程包括劳力密集和耗时的多种任务,涉及巨额的金钱费用;技术辅助审查方法使创建SLR的不同过程自动化,特别侧重于减少审查员的筛选负担;我们为TAR提出了一个新方法,从研究协议中将充分管道用于筛选相关文件;我们的管道克服了专家建造的由三个不同组成部分组成的布尔恩查询的需要:主要检索引擎、审查排级和内部审查排级,将学习到排位的技术与相关的反馈方法相结合;此外,我们提供了2019年电子健康实验室数据集第二任务的最新版本,我们公开提供该数据。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Anomalous Instance Detection in Deep Learning: A Survey
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员