Spatiotemporal traffic data (e.g., link speed/flow) collected from sensor networks can be organized as multivariate time series with additional spatial attributes. A crucial task in analyzing such data is to identify and detect anomalous observations and events from the data with complex spatial and temporal dependencies. Robust Principal Component Analysis (RPCA) is a widely used tool for anomaly detection. However, the traditional RPCA purely relies on the global low-rank assumption while ignoring the local temporal correlations. In light of this, this study proposes a Hankel-structured tensor version of RPCA for anomaly detection in spatiotemporal data. We treat the raw data with anomalies as a multivariate time series matrix (location $\times$ time) and assume the denoised matrix has a low-rank structure. Then we transform the low-rank matrix to a third-order tensor by applying temporal Hankelization. In the end, we decompose the corrupted matrix into a low-rank Hankel tensor and a sparse matrix. With the Hankelization operation, the model can simultaneously capture the global and local spatiotemporal correlations and exhibit more robust performance. We formulate the problem as an optimization problem and use tensor nuclear norm (TNN) to approximate the tensor rank and $l_1$ norm to approximate the sparsity. We develop an efficient solution algorithm based on the Alternating Direction Method of Multipliers (ADMM). Despite having three hyper-parameters, the model is easy to set in practice. We evaluate the proposed method by synthetic data and metro passenger flow time series and the results demonstrate the accuracy of anomaly detection.


翻译:从传感器网络收集的斯帕托时间流量数据(例如链接速度/流量)可以组织成具有额外空间属性的多变时间序列。 分析这些数据的关键任务是识别和检测来自具有复杂的空间和时间依赖性的数据的异常观测和事件。 robust Jempust 元组件分析( RPCA) 是一个广泛使用的异常检测工具。 然而, 传统的 RPCA 纯粹依赖于全球低位假设, 而忽略当地时间相关性 。 有鉴于此, 本研究建议采用 Hankel 结构化的 RPCA 高调版本, 用于在磁场数据中检测异常现象。 我们将原始数据视为多变时间序列矩阵的异常观测和事件。 我们将低位矩阵转换为三级高位假设值假设值, 然后将低级矩阵转换为三级高压。 我们将腐败矩阵转换成一个低级的 汉克勒尔· 高压和稀薄矩阵。 随着 右键化操作, 模型可以同时捕捉到全球和本地的正标度标准 。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年9月16日
商业数据分析,39页ppt
专知会员服务
157+阅读 · 2020年6月2日
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
异常检测论文大列表:方法、应用、综述
专知
125+阅读 · 2019年7月15日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Arxiv
20+阅读 · 2021年2月28日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年9月16日
商业数据分析,39页ppt
专知会员服务
157+阅读 · 2020年6月2日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
异常检测论文大列表:方法、应用、综述
专知
125+阅读 · 2019年7月15日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员