Semi-supervised learning aims to boost the accuracy of a model by exploring unlabeled images. The state-of-the-art methods are consistency-based which learn about unlabeled images by encouraging the model to give consistent predictions for images under different augmentations. However, when applied to pose estimation, the methods degenerate and predict every pixel in unlabeled images as background. This is because contradictory predictions are gradually pushed to the background class due to highly imbalanced class distribution. But this is not an issue in supervised learning because it has accurate labels. This inspires us to stabilize the training by obtaining reliable pseudo labels. Specifically, we learn two networks to mutually teach each other. In particular, for each image, we compose an easy-hard pair by applying different augmentations and feed them to both networks. The more reliable predictions on easy images in each network are used to teach the other network to learn about the corresponding hard images. The approach successfully avoids degeneration and achieves promising results on public datasets. The source code and pretrained models have been released at https://github.com/xierc/Semi_Human_Pose.


翻译:半监督的学习旨在通过探索未贴标签的图像来提高模型的准确性。 最先进的方法基于一致性, 学习未贴标签的图像, 鼓励模型对不同增强度下的图像作出一致的预测。 但是, 当应用来做出估计时, 方法会退化, 并预测未贴标签的图像中的每一像素作为背景。 这是因为由于等级分布高度不平衡, 矛盾的预测会逐渐推到背景类中。 但是这不是监督学习中的一个问题, 因为它有准确的标签。 这激励我们通过获取可靠的假标签来稳定培训。 具体地说, 我们学习了两个网络, 互相教对方。 特别是, 我们通过应用不同的增强度, 将两者配对简单化。 每个网络简单图像上的更可靠的预测被用来教给其他网络学习相应的硬图像。 这种方法成功地避免了退化, 并在公共数据集上取得了令人乐观的结果 。 源代码和预先培训的模型已经在 https://github.com/xierc/Semia_HHR_Pose_Pose 上发布 。

0
下载
关闭预览

相关内容

专知会员服务
67+阅读 · 2021年9月10日
专知会员服务
31+阅读 · 2021年7月2日
专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
0+阅读 · 2021年12月1日
VIP会员
相关VIP内容
专知会员服务
67+阅读 · 2021年9月10日
专知会员服务
31+阅读 · 2021年7月2日
专知会员服务
44+阅读 · 2020年10月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员